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M-Closed versus M-Completed

Different frameworks for performing and evaluating inference

Which is most common? most realistic?

Model selection is coherently treated from a Bayesian point of
view in the M-Closed framework.

But can it be coherently treated in the M-Completed framework?

As Eduardo shows us, the answer is yes!!!



Parametric Inference in the M-Closed Framework

Problem Considered: Select an estimator of the true predictive
density f (x) based on iid data x = (x1, x2, . . . , xn) from f (x).

Suppose it can be assumed that f (x) belongs to a simple
parametric model class

F = {f (x |θ) : θ ∈ Θ}

Some candidates for f̂ (x) discussed by Eduardo:

f (x |θ̂ML) using no prior

f (x |φ0,x) =
∫

f (x |θ) p(θ|φ0,x) dθ using p(θ|φ0)

f (x |θ̂MAP) using p(θ|φ0)

1
B

∑B
b=1 f (x |θ̃(b)) using a WLB sample but no prior



Parametric Inference in the M-Closed Framework

We are here immediately faced with some Plug-in versus Bayes
choices

Such choices were treated as the Estimative vs Predictive
controversy in the early 1970’s

This was largely settled for KL risk from a decision theory point
of view by Aitkinson in 1975:

f̂ (x) = f (x |φ0,x) is Bayes and hence best under p(θ|φ0)

f̂ (x) = f (x |φ0,x) under the uniform prior dominates the
plug-in f̂ (x) = f (x |θ̂ML) when all f ∈ F are Normal

Interestingly the WLB predictive f̂ (x) = 1
B

∑B
b=1 f (x |θ̃(b))

converges to f̂ (x) = f (x |φ0,x) when p(θ|φ0) is the uniform prior.



Parametric Inference in the M-Closed Framework

Hierarchical elaboration of F yields larger classes

F∗ = {f ∗(x |φ) : φ ∈ Φ}

with f ∗(x |φ) =
∫

f (x |θ) p(θ|φ) dθ for hyperparameter φ.

Candidates here for f̂ (x) discussed by Eduardo:

f ∗(x |φ̂EB,x) using no hyperprior

f ∗(x |λ0,x) =
∫

f ∗(x |φ,x) p∗(φ|λ0,x) dφ using prior p∗(φ|λ0)

f ∗(x |φ̂MAP ,x) using p∗(φ|λ0)

1
B

∑B
b=1 f ∗(x |φ̃(b),x) using a WLB sample but no hyperprior

It is still clear that posterior predictive estimates are best under
their corresponding priors (from complete class theorems).

This WLB predictive may well be better than the EB plug-in.



Parametric Inference in the M-Closed Framework
Further model elaboration of F∗ yields

F∗∗ = {f ∗∗(x |λ) : λ ∈ Λ}
with f ∗∗(x |λ) =

∫
f (x |θλ, λ) p(θλ|λ) dθλ for model λ

Candidates here for f̂ (x) discussed by Eduardo:

f ∗∗(x |λ̂BF ,x) where λ̂BF = arg max
Λ

f ∗∗(x |λ)

f ∗∗(x |ω0,x) =
∫

f ∗∗(x |λ,x) p∗∗(λ|ω0,x) dλ using p∗∗(λ|ω0)

f ∗∗(x |ω0,x) =
∑m
λ=1 ω

0
λ(x) f ∗∗(x |λ,x) using p∗∗(λ|ω0) = ωλ

f ∗∗(x |λ̂PO ,x) where λ̂PO = arg max
Λ

p∗∗(λ|ω0,x)

1
B

∑B
b=1 f ∗(x |φ̃(b),x) using a WLB sample but no model

space prior

Interestingly, WLB provides automatic model weight estimates
when the set of models under consideration is discrete. These
provide avenues for model averaging and model selection.



Parametric Inference in the M-Closed Framework

Lastly, the reduction of F∗∗ to discrete model mixtures is
considered

F∗∗∗ = {f ∗∗∗(x |ω) : ω ∈ Ω}

with f ∗∗∗(x |ω) =
∑m
λ=1 ωλ f ∗∗(x |λ)

Candidates here for f̂ (x) discussed by Eduardo:

f ∗∗∗(x |ω̂E ,x) where ω̂E = arg max
Ω

f ∗∗∗(x |ω)

f ∗∗∗(x |ω̂, ,x) =
∑m
λ=1 ω̂λ f ∗∗(x |λ,x) where

ω̂ = arg max
Ω

p∗∗∗(ω|α0,x)

f ∗∗∗(x |α0,x) =
∑m
λ=1 E [ωλ|α0,x ] f ∗∗(x |λ,x)

Interesting variations of these predictive estimates obtain with
different prior choices for ω.



Parametric Inference in the M-Completed Framework
Turning now to the M-Completed framework, suppose of interest
is a class of parametric predictive distributions

FK = {fκ(x) : κ ∈ K}

such as any of the classes of predictive estimates constructed
for F ,F∗,F∗∗,F∗∗∗.

From the M-Completed perspective, a prior distribution cannot
be used to describe the uncertainty surrounding model selection
from FK .

Indeed, honest acknowledgement of uncertainly here requires a
prior that puts probability 1 on

F = {F : F is a probability distribution on X},

such as a Dirichlet process prior F ∼ DP(a0F0).

Fully respecting this limitation for M-Completed contexts,
Eduardo and coauthors have proposed a coherent approach that
maximizes expected log utility wrt F for selection of fκ ∈ FK .



Parametric Inference in the M-Completed Framework

Their maximum expected utility selection approach for the
predictive density problem proceeds as follows.

The posterior mean of F ∼ DP(a0F0), with a0 = 0 for
objectiveness, is simply the empirical cdf of x , denoted F̂ (·).

The posterior expected utility of any fκ ∈ FK is then

Un(κ) =

∫
log fκ(x) dF̂ (x) =

1
n

n∑
i=1

log fκ(xi ),

which is maximized by the same κ̂ that maximizes

n∏
i=1

fκ(xi ).

Notice that this κ̂ minimizes the KL distance from fκ ∈ FK to F̂ .



Parametric Inference in the M-Completed Framework

Illustrating the potential of this approach, Eduardo considers the
class of model averaged predictive estimates of the form

fω(x) =
m∑

j=1

ωj fj (x |x)

where each fj (x |x) =
∫

fj (x |θj )πj (θj |x) dθj is obtained with a
posterior reference prior.

From this class, the optimally weighted predictive model is
simply obtained by the ω̂ which maximizes

n∏
i=1

fω(xi ) =
n∏

i=1

m∑
j=1

ωj fj (xi |x).

Note that this strategy is providing an automatic and coherent
approach to selection of the averaging weights.



Parametric Inference in the M-Completed Framework

Overall, it seems clear that the ultimate effectiveness of this
M-Complete strategy rests on the quality of the predictive
densities that comprise the parametric class FK of interest.

Thus, Eduardo is exactly right to emphasize the importance of
the construction of the classes of surrogate predictive densities
to be considered.

In this regard, his development of the wide varieties of predictive
estimates for the classes F ,F∗,F∗∗,F∗∗∗, is a generous master
class in how we might proceed forward with these constructions.



Congratulations
Eduardo!



Happy Birthday Luis!


